
Inside the Android Application Framework

Introduction
Your host: Dan Morrill, Developer Advocate

Android is a complete OS, not just a framework

Even the friendliest abstraction still has “seams”

Let’s demystify Android’s seams

Managed Component Lifecycles

An Android APK is a collection of components

Components share a set of resources

Databases, preferences, file space, etc.

Also: a Linux process.

Every Android component has a managed lifecycle

Basics of an Android Application

Activities

Tasks

Processes

Activities and Tasks
An Activity is a “molecule”: a discrete chunk of functionality

A task is a collection of Activities

A “process” is a standard Linux process

Activities and Tasks

APK Package
Process

ContentProvider

Service

ActivityActivity

APK Package

Process

Activity

ContentProvider

Process

Service

Activity

APK Package

Process

Activity

ContentProvider

Process

Service

Activities and Tasks

APK Package
Process

ContentProvider

Service

Task

ActivityActivity Activity

Activities Are...
...a concrete class in the API

...an encapsulation of a particular operation

...run in the process of the .APK which installed them

...optionally associated with a window (UI)

...an execution Context

Tasks Are...
...more of a notion than a concrete API entity

...a collection of related Activities

...capable of spanning multiple processes

...associated with their own UI history stack

...what users on other platforms know as “applications”

Process Basics
Android process == Linux process

By default, 1 process per APK

By default, 1 thread per process

All* components interleave events into the main thread

*
Most

Process Lifecycle
A process is started for a given user ID when needed

Binding to a Service

Binding to a ContentProvider

Starting an Activity

Firing an IntentReceiver

Remains running until killed by the system

More on Activities

Activity Lifecycle

Examples of Common Use
Cases

The Directed Cyclic Graph of Life
Activities have several states

Lifecycle methods are called on
transitions

You typically don’t need to use
them all, but they are there

http://code.google.
com/android/reference/android/app/
Activity.html

http://code.google.com/android/reference/android/app/Activity.html
http://code.google.com/android/reference/android/app/Activity.html
http://code.google.com/android/reference/android/app/Activity.html

Activity Lifecycle
Three general “phases”

Starting up

onCreate(): first method called during lifetime, with prior state

onStart()/onRestart(): signal that execution is beginning

onResume(): signals that a previous pause is being undone

Activity Lifecycle
Normal execution

onFreeze(): save UI state (NOT intended to save persistent data)

onPause: signals loss of focus and possible impending shutdown

Activity Lifecycle
Shutting down

onStop()/onDestroy(): final shutdown and process termination

Not guaranteed to be called (and usually not, except on finish()...)

Activity Lifecycle Examples
Starting a Child Activity

Child Activity + Process Shutdown

Returning to the Home Screen

Calling finish() Explicitly

Displaying a Dialog Box

Semi-Transparent Windows

Device Sleep

Example: Child Activity Launched

Call sequence:

onCreate()

onStart()

onResume()

onFreeze()

onPause()

onStop()

onRestart()

onStart(), onResume(), ...

This is the “classic”
scenario.

Example: Child Activity + Process
Death

Call sequence:

onCreate() (empty state)

onStart()

onResume()

onFreeze()

onPause()

onStop() (maybe)

onDestroy() (maybe)

onCreate() (with state), ...

Like the basic case, but
onCreate() is called again,
with the state saved in
onFreeze().

Example: User Hits ’Home’
Call sequence:

onCreate()

onStart()

onResume()

onFreeze()

onPause()

onStop() (maybe)

onDestroy() (maybe)

Identical to the basic case
-- that is, the Home key is
not a special case.

Example: finish() Called
Call sequence:

onCreate()

onStart()

onResume()

onPause()

onStop()

onDestroy()

Because the Activity has
been explicitly told to quit
and is being removed from
the task (and history stack),
onFreeze() is not called,
and onDestroy() is
reached.

Example: Dialog Box
Call sequence:

onCreate()

onStart()

onResume()
Despite appearances,
dialog boxes are Views,
and not Activities, so they
have no effect on the
owning Activity’s lifecycle.

Example: Transparent/Non-fullscreen Child

Call sequence:

onCreate()

onStart()

onResume()

onFreeze()

onPause()

onResume()

The new partial-screen
window leaves a portion of
the previous window visible,
so onPause() is followed by
onResume() (without
onStop()) when the child
closes.

Example: Device Goes to Sleep
Call sequence:

onCreate()

onStart()

onResume()

onFreeze()

onPause()

onResume()

The device going to sleep is
identical to a non-fullscreen
Activity being launched on
top.

Threads on Android

Overview

Loopers

Multi-thread Considerations

Threading Overview
Each process has one thread (by default)

Most components share the single thread

Services and ContentProviders sometimes do not

Threads and Loopers
Each thread has a Looper to handle a message queue

Events from all components are interleaved into Looper

e.g. View UI events, IntentReceivers firing, etc.

Loopers cannot accommodate multi-threaded access

They are designed to play nicely with MessageHandlers

Threads and Loopers
APK PackageProcess

Thread
Looper

Message
Queue

Thread
External
Service

Calls

Intent
Receive

r

Activity

Activity

UI
Events

System
Events

Local
Service

Call

Threads and Views
Views use Looper messages to fire events

Since Loopers are 1:1 with threads, the View tree is too

Threads you create cannot directly touch a View

But, you can create a new Looper for your own thread

Threads in Other Contexts
Services & ContentProviders sometimes run in their own threads

...but still in the same process

Components can create threads, but must handle thread-safety

Service Lifecycle
Started by some other Component

Either explicitly, or implicitly by binding to it

Explicitly-started Services run until explicitly shut down

(or killed by the system during a memory crunch)

Implicitly-started Services run til the last client unbinds

More on Processes

Resource Management

Processes & Security

Controlling Processes

Process Resource Management
Spawned by the special “Zygote” process

Process + pre-warmed Dalvik VM == responsiveness

Process runs under user ID unique to system

Process + User ID == security

Processes & Security
Each application is given a unique user ID

No exceptions!

...except these: init, Zygote, and the main runtime

Each application has direct access only to its own data

Other apps’ resources are available only via defined,
explicitly-exposed APIs

i.e. Issuing Intents, binding to Services or ContentProviders

Inter-Process Communication

Why??

Process Transparency

Binder in 30 Seconds

IPC using Parcelables

IPC using Bundles

Android IDL

Why??
All this process/Activity/task stuff is confusing... why?

It’s all for the noble goal of efficiency (i.e. speed.)

Serialization is slooow; memory transfers are slooow.

CPU is not the bottleneck: think memory & bandwidth.

Process Transparency
Process management is transparent to code.

...almost. In some cases, it’s unavoidably visible.

Lifecycle is seamless, but data sometimes isn’t.

Specific APIs send data across process boundaries.

Kernel Process

IPC Overview
Binder

Bundle

Intent
Receive

r

Activity

Custom
Objects

Service

Parcel

Parcelable

Binder in 30 Seconds
All IPC goes through “The Binder”

Binder is implemented as a kernel module + system lib

Supports sophisticated cross-process data transport

The framework APIs “know” how to use Binder

Generally two entry points: Bundles & Parcelables

IPC - Parcelables
A Parcelable is a class which can marshal its state to something
Binder can handle -- namely, a “Parcel”

Standard Java serialization has semantics Parcelables don’t need

Supporting full serialization would mean wasting CPU cycles

IPC - Bundles
Bundles are typesafe containers of primitives

That is, C-like primitives: ints, strings, etc.

Simple data-passing APIs use Bundles

Think of onFreeze() as passing data to your future self

Flat structure permits optimizations like memory-mapping

IPC - AIDL
“Android Interface Definition Language”

Used to build developer-friendly APIs using Parcelables

Preferred way to expose structured, complex-typed APIs

Compromise between efficiency and Java usability

Wrapping Up

APKs are loose collections of components

Tasks (AKA apps) are bags of component
instances that span processes & APKs

Managed lifecycles & IPC join the “seams”

Questions?

