
Documentation for LISP in BASIC

The software and the documentation are both Copyright ©2008 Arthur Nunes-Harwitt

LISP in BASIC is a LISP interpreter for a Scheme-like dialect of LISP,
which happens to have been written in BASIC.

1. Starting Up
To launch LISP-in-BASIC type its name at the command-line, or double

click on its icon. A shell-window should come up; at the top of the

window you should see the following message.

Initializing Memory...
Initializing Lisp Environment...
LISP in BASIC v1.3 by Arthur Nunes-Harwitt
0]

 The bracket (‘]’) is the prompt. (Note that there is a number right

before the bracket. This number is the number of open left parentheses.)

Type a symbolic expression here. If it is a complete expression — no

remaining open parentheses, then the expression is evaluated; otherwise,

another prompt appears.

2. Quitting
To quit, type the expression (quit) at the prompt. Evaluating that

expression in a procedure also stops the interpreter.

3. The Language
3.1 A Brief Introduction to LISP

In many programming languages, a program is a sequence of state

altering operations. One can program that way in LISP, but a more

mathematical style is possible and preferable. In math, an important

way to create new functions is to compose existing functions. For

example, if f and g are existing functions then one can define the new
function h = f ° g (or h(x) = f(g(x))). So too, in LISP one defines new

procedures by composing existing procedures and syntactic forms. LISP

syntax is a little different from mathematical syntax. Instead of writing

h(x) = ..., one writes (define h (lambda (x) ...)); and instead of writing

f(g(x)), one writes (f (g x)). A program is simply a collection of defined

constants and procedures.

 The name LISP stands for LISt Processing. The name is due to the

fact that the list is the primary data structure in LISP. A list is a

sequence of objects; an object can be a symbol, a number, another list,

and even a procedure. The syntax of a list is simply the sequence of its

objects separated by spaces and surrounded by parentheses.

Interestingly, the syntax of a list is similar to the syntax of a procedure

call. In fact, to prevent such a structure from being evaluated when

typed in, the structure must be quoted.

 There are a small number of basic list operations. Once these are

mastered, one can do just about anything with lists. The procedure car
returns the first element of the list. The procedure cdr returns the rest of

the list (after the first element). The procedure cons puts those pieces

back together to form a list.

Example:

(define L '(1 2 3)) ⇒ L
(car L) ⇒ 1
(cdr L) ⇒ (2 3)
(cons (car L) (cdr L)) ⇒ (1 2 3)
(define second (lambda (LST) (car (cdr LST)))) ⇒ second
(second L) ⇒ 2

 Another important procedure is null?. It determines whether or not

a list is empty. (Sometimes the empty list is referred to as nil. In fact,

the variable NIL is initially bound to the empty list in LISP-in-BASIC.)

Example:

(null? L) ⇒ ()
(null? '()) ⇒ T

 In LISP special iteration constructs are not needed. Recursive

definitions are more powerful and more elegant. Suppose we wanted to

compute the last element of a list. If a list has many elements, then

clearly the last of the rest of the list is the same as the last of the list. If

a list has only one element, then that element is the last element. That

reasoning is sufficient for the purpose of writing a procedure.

Example:
(define last
 (lambda (S)
 (if (null? (cdr S)) If the rest of the list is empty, e.g. it has only one element
 (car S) then the answer is the first element, which is also the last element
 (last (cdr S))))) otherwise the answer is the last of the rest of the list
⇒ last
(last L) ⇒ 3

3.2 Primitive Types

The following classes of objects exist in LISP-in-BASIC.

• number (e.g. 123 and 3.14)

• symbol (e.g. foo and bar)
• pair (e.g. (x . y))
• primitive (e.g. the value of the symbol car in the initial

environment)

• procedure (user defined procedures)

 Note, though, that there is no primitive procedure to distinguish

primitives from procedures. Both cause procedure? to evaluate to T.

 There is no boolean class. The empty list is treated as the boolean

false. There is a boolean true, though. In the initial environment, the

symbol T is bound to true, and NIL is bound to the empty list. The empty

list is printed as ().

3.3 Syntactic forms

and

 Form:
 (and exp1 exp2 ... expn)

 Examples:

 (and (= 1 1) (car '(1 2 3))) ⇒ 1

 (and nil (= 1 1)) ⇒ ()

Explanation:

And continues to evaluate its arguments until it hits an expression that

evaluates to the empty list. If no expressions evaluate to the empty list,

then it returns the value of the last expression.

cond

 Form:
 (cond (test1 exp1,1 ... exp1,j) ... (testn expn,1 ... expn,k))

 where testn may be simply the symbol else

 Examples:

 (let ((x '(1 2 3))) (cond ((null? x) nil) ((= (car x) 2) x) (else t)))
 ⇒ T

 (let ((x '(2 3))) (cond ((null? x) nil) ((= (car x) 2) x) (else t)))
 ⇒ (2 3)

Explanation:

For each clause in the sequence, cond continues to evaluate the test

expression of the clause until one evaluates to a non-nil value. Upon

reaching such a clause, the expressions following the test are evaluated,

and the cond clause evaluates to the last expression in that clause. (The

symbol else is treated specially in the cond expression. If it is the last

clause, and it is reached, the remaining expressions in that clause are

evaluated.) Cond comes in handy when defining recursive procedures, or

other procedures that need to make a decision.

define

 Form:

 (define sym exp)

 Examples:

 (define five 5) ⇒ FIVE

 five ⇒ 5

 (define short-alpha '(a b c d)) ⇒ SHORT-ALPHA

 short-alpha ⇒ (A B C D)
 (define double (lambda (n) (* 2 n))) ⇒ DOUBLE

 (double 3) ⇒ 6

Explanation:

Define is used to bind a variable to a value. A define expression

evaluates to the name of the variable being defined. (A value can be a

procedure.)

if

 Form:
 (if test exp1 exp2) or (if test exp)

 Examples:

 (if (= 1 1) 3 4) ⇒ 3

 (if (= 1 2) 3 4) ⇒ 4

 (if (= 1 2) 3) ⇒ ()

Explanation:

If, like cond, is used for making decisions. However, if has a much

simpler structure. If the test evaluates to the empty list then the

expression evaluates to what exp2 evaluates to. Otherwise, the

expression evaluates to what exp1 evaluates to. (It is possible to leave off

the second expression, in which case the second expression is implicitly

the empty list.)

lambda

 Form:
 (lambda (var1 ... varm) exp1 ... expn)

 Examples:

 (define double (lambda (n) (* 2 n))) ⇒ DOUBLE

 (double 3) ⇒ 6

 (define make-adder (lambda (n) (lambda (m) (+ n m))))

 ⇒ MAKE-ADDER

 (define add3 (make-adder 3)) ⇒ ADD3

 (add3 7) ⇒ 10

Explanation:

A lambda expression evaluates to a procedure. This procedure can then

be applied — as in the examples. Writing a LISP program consists of

writing such procedures.

let

 Form:
 (let ((var1 exp1) ... (varm expm)) exp1’ ... expn’)

 Example:

 (let ((x 5)) (+ x 1)) ⇒ 6

Explanation:

Local variables are defined with a let expression. Note that the variables

are bound ‘in parallel’ so none of the let variables can be defined in terms

of the others. The let expression evaluates to the last expression in the

implicit sequence after the bindings.

let*

 Form:
 (let* ((var1 exp1) ... (varm expm)) exp1’ ... expn’)

 Example:

 (let* ((x 2) (y (+ 1 (* 2 x)))) (+ y 2)) ⇒ 7

Explanation:

Let* does almost the same thing as let, but with let*, the variables are

bound in sequence so a variable can be defined in terms of those

preceding it.

or

 Form:

 (or exp1 exp2 ... expn)

 Examples:

 (or (= 1 2) (car '(1 2 3)) (cdr '(1 2 3))) ⇒ 1

 (or (= 1 3) (= 1 2)) ⇒ ()

Explanation:

Or continues to evaluate its arguments until it hits an expression that

does not evaluate to the empty list. At that point, the expression

evaluates to that value. If no non-nil values are found, the expression

evaluates to the empty list.

quote

 Form:

 (quote exp) or 'exp

 Examples:

 (quote (1 2 3)) ⇒ (1 2 3)
 '(1 2 3) ⇒ (1 2 3)
 'a ⇒ a

 (+ '5 '6) ⇒ 11

Explanation:

Quote prevents its expression from being evaluated. If a list were not

quoted, the expression would be evaluated, and a parenthesized

expression would be treated as a procedure call.

sequence

 Form:
 (sequence exp1 exp2 ... expn)

 Example:

 (define temp 3) ⇒ TEMP

 (sequence (set! temp 5) t) ⇒ T

Explanation:

Sequence evaluates a sequence of expressions in order from left to right.

The expression evaluates to the last expression in the sequence.

Sequences are used when expressions that perform side effects are

involved.

set!

 Form:

 (set! var exp)

 Example:

 (define temp 3) ⇒ TEMP

 temp ⇒ 3

 (set! temp 5) ⇒ 5

 temp ⇒ 5

Explanation:

If a variable is bound to a value, set! changes the value associated with

the variable. The new value is what the second argument evaluates to.

The set! expression evaluates to the new value.

3.4 Built-in Procedures

*
 Examples:
 (*) ⇒1
 (* 2) ⇒2
 (* 2 3) ⇒6
 (* 2 3 4) ⇒24

Explanation:
The * procedure is the multiplication or product procedure.

+
 Examples:
 (+) ⇒ 0
 (+ 2) ⇒ 2

 (+ 2 3) ⇒ 5
 (+ 2 3 4) ⇒ 9

Explanation:
The + procedure is the addition or sum procedure.

-
 Examples:
 (- 2) ⇒ -2
 (- 3 2) ⇒ 1
 (- 3 2 1) ⇒ 0

Explanation:
When called with one argument the - procedure performs negation.
When called with more than one argument, the - procedure subtracts
from the first argument the rest of the arguments.

/
 Examples:
 (/ 2) ⇒ .5
 (/ 12 2) ⇒ 6
 (/ 12 2 3) ⇒ 2

Explanation:
When called with one argument the / procedure computes the reciprocal.
When called with more than one argument, the / procedure divides the
first argument by the rest of the arguments.

<
 Examples:
 (< 2 3) ⇒ T
 (< 2 2) ⇒ ()
 (< 2 1) ⇒ ()

Explanation:
The < procedure is the less-than procedure. If the first argument is less
than the second it evaluates to true, otherwise it evaluates to nil.

<=
 Examples:
 (<= 2 3) ⇒ T

 (<= 2 2) ⇒ T
 (<= 2 1) ⇒ ()

Explanation:
The <= procedure is the less-than-or-equal procedure. If the first
argument is less than or equal to the second it evaluates to true,
otherwise it evaluates to nil.

=
 Examples:
 (= 2 3) ⇒ ()
 (= 2 2) ⇒ T
 (= 2 1) ⇒ ()

Explanation:
The = procedure is the numeric equal procedure. If the first argument is
numerically equal to the second it evaluates to true, otherwise it
evaluates to nil.

>
 Examples:
 (> 2 3) ⇒ ()
 (> 2 2) ⇒ ()
 (> 2 1) ⇒ T

Explanation:
The > procedure is the greater-than procedure. If the first argument is
greater than the second it evaluates to true, otherwise it evaluates to nil.

>=
 Examples:
 (>= 2 3) ⇒ ()
 (>= 2 2) ⇒ T
 (>= 2 1) ⇒ T

Explanation:

The > procedure is the greater-than-or-equal procedure. If the first
argument is greater than or equal to the second it evaluates to true,
otherwise it evaluates to nil.
apply
 Examples:
 (apply + '(1 2 3)) ⇒ 6
 (apply cons '(1 2)) ⇒ (1 . 2)

Explanation:
The apply procedure takes two arguments: a function and a list. The
function is then applied to the elements of the list as the function’s
arguments.

assoc
 Examples:
 (assoc '(a b c) '(((x y) z) ((a b c) d))) ⇒ ((A B C) D)
 (assoc 'z '((x y) (a b) (c d))) ⇒ ()

Explanation:
The procedure assoc searches an association list. It returns the first pair
whose first element is equal? to the first argument. If there is no such
pair, then nil is returned.

assq
 Examples:
 (assq '(a b c) '(((x y) z) ((a b c) d))) ⇒ ()
 (assq 'a '((x y) (a b) (c d))) ⇒ (A B)
 (assq 'z '((x y) (a b) (c d))) ⇒ ()

Explanation:
The procedure assq searches an association list. It returns the first pair
whose first element is eq? to the first argument. If there is no such pair,
then nil is returned.

atan
 Examples:
 (atan 1) ⇒ .7853981
 (atan 0) ⇒ 0

Explanation:
The procedure atan computes the arc-tangent function. (Angles are
measured in radians.)

bound?
 Example:
 (define temp 5) ⇒ TEMP
 (bound? 'temp) ⇒ T

Explanation:
The procedure bound? returns true if its argument is a symbol that is
bound in the current environment, otherwise it returns nil.

car
 Examples:
 (car '(1 2 3)) ⇒ 1
 (car '(x . y)) ⇒ X

Explanation:
The procedure car returns the first element of a pair.

cdr
 Examples:
 (cdr '(1 2 3)) ⇒ (2 3)
 (cdr '(x . y)) ⇒ Y

Explanation:
The procedure cdr returns the second element of a pair. When applied to
a proper list, the result is often called the but-first of the list or the rest
of the list.

cons
 Examples:
 (cons 'x 'y) ⇒ (X . Y)
 (cons 1 '(2 3)) ⇒ (1 2 3)

Explanation:
The procedure cons constructs a pair. When the second argument is a
list, the first argument appears to become the new first element of that
list.

cos
 Examples:
 (cos .7853981) ⇒ .707168
 (cos 1.570796) ⇒ 7E-08
 (cos 1.047197) ⇒ .5000001

Explanation:
The procedure cos computes the cosine function. (Angles are measured
in radians.)

eq?
 Examples:
 (eq? 'a 'a) ⇒ T
 (eq? 'a 'b) ⇒ ()
 (eq? '(1 2) '(1 2)) ⇒ ()

Explanation:
The procedure eq? returns true if its arguments are identical, otherwise
it returns nil. (Symbols are always identical; however, lists may look
similar, but not be identical.)

equal?
 Examples:
 (equal? 'a 'a) ⇒ T
 (equal? 'a 'b) ⇒ ()
 (equal? '(1 2) '(1 2)) ⇒ T
 (equal? '(1 2) '(3 4)) ⇒ ()

Explanation:
The procedure equal? returns true if its arguments have the same
structure, otherwise it returns nil.

eval
 Example:
 '(+ 2 3) ⇒ (+ 2 3)
 (eval '(+ 2 3)) ⇒ 5

Explanation:
The procedure eval evaluates a list structure as if it were LISP code.

exp
 Examples:
 (exp 1) ⇒ 2.718282
 (exp 2) ⇒ 7.389056

 (exp (log 3)) ⇒ 3

Explanation:

The procedure exp computes the exponential function (i.e. ex).

floor
 Examples:
 (floor 1.6) ⇒ 1
 (floor -1.6) ⇒ -2

Explanation:
The procedure floor computes the floor function.

for-each
 Example:
 (define temp (list (cons 'a 1) (cons 'b 2) (cons 'c 3))) ⇒ TEMP
 (for-each set-cdr! temp '(7 8 9)) ⇒ ()
 temp ⇒ ((A . 7) (B . 8) (C . 9))

Explanation:
The procedure for-each is similar to map, except that for-each is used for
its side effects; it always evaluates to nil. It applies its first argument,
which should be a function, to the corresponding elements of the rest of
its arguments, which should be lists, in sequence.

gc
 Example:
 (gc)

Explanation:
The procedure gc causes LISP-in-BASIC to perform a garbage collection.
It returns the number of memory cells available.

length
 Example:
 (length '(a b c)) ⇒ 3

Explanation:
The procedure length computes the length of a list.

list
 Examples:
 (list 1 2 3) ⇒ (1 2 3)
 (list '(a) '(b)) ⇒ ((A) (B))

Explanation:
The procedure list constructs a list of its arguments and returns that list.

load
Explanation:
The procedure load takes one argument: a symbol that is the file name of
the file to be loaded. (The file should be a text file.) The file is assumed
to be a sequence of LISP expressions. They are read in one at a time and
evaluated until there are no more.

log
 Examples:
 (log 2.718281828) ⇒ 1
 (log 10) ⇒ 2.302585

Explanation:
The procedure log computes the natural logarithm function (i.e. ln(x)).

map
 Examples:
 (map (lambda (x) (* x x)) '(1 2 3)) ⇒ (1 4 9)
 (map cons '(a b c) '(1 2 3)) ⇒ ((A . 1) (B . 2) (C . 3))

Explanation:
The procedure map returns a new list whose elements are the values
computed by applying the first argument, a function, to the
corresponding elements of the rest of the arguments.

member

 Examples:
 (member '(a b) '((x y) (a b) (c d))) ⇒ ((A B) (C D))
 (member '(e f) '((x y) (a b) (c d))) ⇒ ()
 (member 'c '(a b c d e f)) ⇒ (C D E F)
 (member 'g '(a b c d e f)) ⇒ ()

Explanation:
The procedure member searches the second argument, which must be a
list, for the first argument. If it finds an element equal? to the first
argument, it returns the rest of the list starting with that element.
Otherwise, it returns nil.

memq
 Examples:
 (memq '(a b) '((x y) (a b) (c d))) ⇒ ()
 (memq 'c '(a b c d e f)) ⇒ (C D E F)
 (memq 'g '(a b c d e f)) ⇒ ()

Explanation:
The procedure memq searches the second argument, which must be a
list, for the first argument. If it finds an element eq? to the first
argument, it returns the rest of the list starting with that element.
Otherwise, it returns nil.

newline
Explanation:
The procedure newline has the side effect of causing the display to move
down one line. This procedure always evaluates to T; it takes no
arguments.

not
 Examples:
 (not (= 1 1)) ⇒ ()
 (not (= 1 2)) ⇒ T

Explanation:
The procedure not performs logical negation. If its argument is nil, it
returns true. Otherwise, it returns nil.

null?
 Examples:
 (null? (cdr '(1))) ⇒ T
 (null? '(1)) ⇒ ()

Explanation:
The procedure null? is a predicate that determines whether its argument
is the empty list; if so, it returns true, otherwise it returns nil.

number?

 Examples:
 (number? 2) ⇒ T
 (number? 'a) ⇒ ()
 (number? '(1 2)) ⇒ ()

Explanation:
The procedure number? is a predicate that determines whether its
argument is a number; if so, it returns true, otherwise it returns nil.

pair?
 Examples:
 (pair? '(1 . 2)) ⇒ T
 (pair? '(1 2)) ⇒ T
 (pair? 'a) ⇒ ()
 (pair? 2) ⇒ ()

Explanation:
The procedure pair? is a predicate that determines whether the its
argument is a pair; if so, it returns true, otherwise it returns nil.

print
Explanation:
The procedure print has the side effect of displaying on the screen its
argument. It also returns the value of its argument.

procedure?
 Examples:
 (procedure? car) ⇒ T
 (procedure? (lambda (x) x)) ⇒ T
 (procedure? 'car) ⇒ ()
 (procedure? '(lambda (x) x)) ⇒ ()
 (procedure? 2) ⇒ ()

Explanation:
The procedure procedure? is a predicate that determines whether its
argument is a procedure; if so, it returns true, otherwise it returns nil.

quit
Explanation:
The procedure quit causes the LISP-in-BASIC interpreter to quit. Unlike
all the other procedures, this one does not (cannot) return a value.

read
Explanation:
The procedure read takes no arguments. When read is called, the user
may type in a symbolic expression; this expression is then returned.

reverse
 Example:
 (reverse '(1 2 3 4)) ⇒ (4 3 2 1)

Explanation:
The procedure reverse must have a list as its argument. It then reverses
that list, and returns the reversed list.

set-car!
 Example:
 (define temp '(1 2 3)) ⇒ TEMP
 (set-car! temp 'a) ⇒ a
 temp ⇒ (a 2 3)

Explanation:
The procedure set-car! destructively modifies the first element of a pair.
The first argument has its car reset to be the second argument. It returns
simply the value of its second argument.

set-cdr!
 Example:
 (define temp '(a . b)) ⇒ TEMP
 (set-cdr! temp 2) ⇒ 2
 temp ⇒ (a . 2)

Explanation:
The procedure set-cdr! destructively modifies the second element of a
pair. The first argument has its cdr reset to be the second argument. It
returns simply the value of its second argument.

sin
 Examples:
 (sin .7853981) ⇒ .7071068
 (sin 1.570796) ⇒ 1
 (sin 1.047197) ⇒ .8660254

Explanation:
The procedure sin computes the sine function. (Angles are measured in
radians.)

symbol?
 Examples:
 (symbol? 'a) ⇒ T
 (symbol? T) ⇒ ()
 (symbol? nil) ⇒ ()
 (symbol? '(a b c)) ⇒ ()
 (symbol? 5) ⇒ ()

Explanation:
The procedure symbol? is a predicate that determines whether its
argument is a symbol; if so, it returns true, otherwise it returns nil.

